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We examine the general dimensional relation between the shape space of the n- 
simplexes and the subspace of their achiral sets. It is found that the only simplexes that 
can be partitioned into "left-handed" and "right-handed" classes are the triangles in 
Euclidean 2-space. 

1. Introduction 

Consider the set K of  all possible convex polyhedra that can be generated by 
continuous deformation of a given polyhedron by preserving its polyhedrical structure. 
K falls into two subsets, achiral Ka and chiral K e. K e may be further partitioned into 
two subsets such that the two mirror images (enantiomorphs) of a given polyhedron 
must belong to different subsets. The two subsets are therefore of  the same order. 

In a different context, with reference to models of  molecules in which chirality 
is due to the chiral distribution of achiral ligands on an achiral framework (in which 
the ligands may be symbolically represented by spheres of different diameter centered 
at the vertices of this framework), Ruch [1] has pointed out that there are two 
classes of  chiral subsets: those in which the path of continuous deformation that 
connects two enantiomorphs necessarily requires passage through an achiral form 
(class a), and those in which this requirement need not be met (class b). In class 
a, the set of achiral models forms the boundary between the two chiral subsets, and 
it is therefore meaningful to assign to all models in each subset a common descriptor, 
indicative of their shared sense of  chirality, such as "right-handed" for one subset 
and "left-handed" for the other. Any  two models that belong to a given subset may 
be termed "homochiral" and any two models that belong to different subsets 
"heterochiral". In class b, there is no such boundary, and the enantiomorphs in the 
two chiral subsets are "chirally connected". It is therefore meaningless (or, at best, 
arbitrary) to attach chirality descriptors to members of  the two subsets; by the same 
token, the "homochiral"-"heterochiral" terminology is inapplicable to members of  
class b. 
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We recently asserted [2] that tetrahedra are in general (that is, in the absence 
of well-defined constraints) chirally connected by continuous deformation. In this 
note, we show how this condition is a consequence of the difference in shape space 
dimensions of Ka and Kc, and we generalize this result to higher dimensions. 

2. Calculation of shape space dimensions 

The size and shape of a tetrahedron is fully defined by a minimum of six 
geometric parameters (the lengths of the edges, for example). Since our concern is 
with chirality, and therefore with shape and not with size, only five independent 
parameters are needed for the complete (and similarity-invariant) definition of a 
tetrahedron's shape. The set of all shapes may be mapped into a five-dimensional 
space, the tetrahedron's "shape space" [2]. Consider now the subspace of the shape 
space that represents the set of all achiral shapes. We would like to know its local 
dimension. Because an achiral tetrahedron must have at least one plane of symmetry, 
at most four independent parameters suffice to define the size and shape of any 
achiral tetrahedron (as proven for the general case below), and three are enough to 
define its shape. The subspace of achiral tetrahedral shapes is therefore locally 
parametrized by a three-dimensional subspace. Because a three-dimensional space 
cannot divide a five-dimensional space into two distinct regions, it follows that a 
chiral tetrahedron can be continuously deformed into its enantiomorph without 
passing through an achiral state. 

The tetrahedron is the simplex in three-dimensional Euclidean space. In a 
more general way, we are interested in finding the dimension of the subspace of 
achiral n-simplexes in the shape space of the n-dimensional simplexes. 

Let E" be the n-dimensional Euclidean space. A simplex is the convex hull 
of n + 1 points that are linearly independent; that is, whenever one of the points is 
fixed, the n vectors that link it to the other n points form a basis for E". An n- 
dimensional simplex has n + 1 vertices and C~ + 1 = n(n + 1)/2 edges. The dimension 
of the shape space of n-dimensional simplexes X, is therefore given by 

dim(X n) = n(n + 1)/2 - 1 = (n 2 + n - 2)/2. 

It can be shown that among achiral simplexes the type with one hyperplane 
of symmetry has the most degrees of freedom. Let us call this plane of symmetry 
H. Only two vertices of the simplex can lie outside H, while the other n - 1 must 
lie in the hyperplane. The reason for this is that if more than two vertices were to 
lie outside H, there would be at least four points on the same two-dimensional linear 
subspace, but the choice of one of these four points would yield three linearly 
dependent vectors, in contradiction to the definition of a simplex. In order to 
determine the size and shape of this type of achiral simplex, it is therefore 
sufficient to know the lengths of the edges that lie in H, which number C~-I 
= (n - 1) (n - 2)/2, the lengths of the edges that lie on one side of H, which number 
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n - 1, and the length of  the edge between the two vertices outside H. Thus, Yn, the 
subspace of  the achiral simplexes in the shape space Xn, will have the following 
dimension: 

dim(¥ a) = (n - 1) (n - 2)/2 + (n - 1) + 1 - 1 

= (n - 1)n/2. 

Our analysis shows that dim(X,,) - dim(Yn) = n - 1; this difference is equal to 
unity only when n = 2. Therefore, triangles, the simplexes in E 2, are unique in that 
they alone among all simplexes can be partitioned into heterochiral sets [3]. 
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